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Abstract

A major time-consuming step of protein NMR structure determination is the generation of reliable
NOESY cross peak lists which usually requires a significant amount of manual interaction. Here we present
a new algorithm for automated peak picking involving wavelet de-noised NOESY spectra in a process
where the identification of peaks is coupled to automated structure determination. The core of this method
is the generation of incremental peak lists by applying different wavelet de-noising procedures which yield
peak lists of a different noise content. In combination with additional filters which probe the consistency of
the peak lists, good convergence of the NOESY-based automated structure determination could be
achieved. These algorithms were implemented in the context of the ARIA software for automated NOE
assignment and structure determination and were validated for a polysulfide-sulfur transferase protein of
known structure. The procedures presented here should be commonly applicable for efficient protein NMR
structure determination and automated NMR peak picking.

Abbreviations: DWT – discrete wavelet transforms; NMR – nuclear magnetic resonance; NOE – nuclear
Overhauser enhancement; NOESY – nuclear Overhauser enhancement spectroscopy; Sud – the polysulfide-
sulfur transferase protein from Wolinella succinogenes.

Introduction

Recent advances in automation of protein NMR
structure determination were the product of a
series of computational algorithms which link the
iterative assignment of NOESY spectra with
structure calculations (Mumenthaler and Braun,
1995; Mumenthaler et al., 1997; Nilges et al.,
1997; Savarin et al., 2001; Herrmann et al.,

2002a; Huang et al., 2003). While new types of
constraints such as residual dipolar couplings
(Tjandra and Bax, 1997), orientational informa-
tion from heteronuclear relaxation in anisotropi-
cally tumbling molecules (Tjandra et al., 1997) or
restraints obtained in the presence of paramag-
netic centers in a protein (Banci et al., 1997) have
facilitated protein structure determination, dis-
tance information from NOESY spectra remains
an important basis for NMR structure elucida-
tion. Peak picking in NOESY spectra has been a
time consuming process, mainly due to spectral
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overlap and because NOESY spectra are often
obscured by noise and spectral artifacts. There-
fore automation of the peak picking process re-
quires reliable filters to select the relevant signals.
A program which combines peak picking with
automated structure determination by using
intermediate protein structures as a guide for the
interpretation of the NOESY spectra has been
described previously (Herrmann et al., 2002b).
Here we present a different approach to auto-
mated peak picking employing wavelet trans-
forms to de-noise spectra prior to automated
structure determination.

Discrete wavelet transforms (DWT) are
commonly used for noise suppression and data
compression. Recent applications of wavelet
transforms to NMR show potential applica-
tions in NMR processing, in particular for the
suppression of the water signal, for data
compression and for de-noising (Hoch and
Stern, 1996; Günther et al., 2002; Cancino-De-
Greiff et al., 2002; Trbovic et al., 2005). Com-
pared to other algorithms used to reduce
spectral noise (such as Fourier and Savitzky-
Golay filtering methods), wavelet de-noising is
exceptionally stable and computationally effi-
cient (Mittermayr et al., 1996; Shao et al.,
2003). For optimal de-noising, noise reduction
must be achieved while preserving the fine
structure of the signals. The result depends
predominately on three variables: the wavelet
base function (e.g. Symmlet, Daubechies,
Coiflet), the wavelet transform (e.g. periodic
orthogonal, translation invariant) and the
thresholding procedure (e.g. soft, hard). In this
work the important de-noising variables were
optimized for automated peak picking of
protein NOESY spectra. As an additional filter
we employ a consistency verification of the
NOESY cross peak lists generated by the
automated peak picking which is based on
symmetries in, and between heteronuclear-edi-
ted NOESY spectra and on the fact that the
NOE signals are usually part of a network of
connectivities between adjacent spin systems.
These algorithms were implemented in the
context of the ARIA software (Linge et al.,
2003) using routines from NMRLab (Günther
et al., 2000), and were validated for a recently
published polysulfide-sulfur transferase (Sud)
protein structure (Lin et al., 2004).

Theory

Multiresolution analysis (MRA) and wavelet series
expansion

MRA as introduced by Mallat (1989a) provides a
general framework to construct a wavelet basis
suitable to describe functions at different resolu-
tion levels. Starting from a father wavelet (scaling
function) an orthonormal mother wavelet w is
obtained. Dyadic dilatations (2j) yield nested sub-
spaces which form a MRA. The base functions wjk

are derived by additional translations (k):

wjkðxÞ ¼ 2j=2 � wð2j � x� kÞ: ð1Þ

The wavelet base functions have compact sup-
port, i.e. the wavelet is zero outside a finite interval
[k Æ 2)j, (k + 1) Æ 2)j) and form an orthonormal
basis forL2ðRÞ (the space of square integrable
functions). Therefore any square integrable func-
tion f(x) can be represented as a series of wjk with
the corresponding scaling function /j0k:

fðxÞ¼
X2j0�1

k¼0
aj0k/j0kðxÞþ

X1

j¼j0

X2j�1

k¼0
bjkwjkðxÞ; j0�0;

ð2Þ

where the scaling aj0k and the wavelet bjk coeffi-
cients are defined by:

aj0k¼
Z 1

0

fðxÞ/j0kðxÞdx; bjk¼
Z 1

0

fðxÞwjkðxÞdx:

ð3Þ

This representation of f provides a location in
both frequency (determined by j) and time (deter-
mined by k). The larger the value of j the higher
the frequency related to wjk and consequently the
resolution.

Wavelet bases

It is an essential feature of wavelets with good de-
noising properties that smooth functions can be
represented with a minimal set of coefficients.
Historically, the first wavelet basis was the Haar
wavelet which is defined by a simple step function:
w(x)=)1, 1(0 £ x < 1/2, 1/2 £ x < 1). Due to
its discontinuity, the Haar basis is not suitable to
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represent smooth functions with a sparse set of
coefficients. More useful wavelet bases can re-
present high order polynomials with many wavelet
coefficients of zero value. This feature is described
by the number of vanishing moments of the wa-
velet basis. For a polynomial function f(x), the
coefficients aj0k and bjk are linear combinations of
different order moments1 of the wavelet base
functions (see Equation 3). If the wavelet base
function w is chosen in a way that the order mo-
ments are zero: � xkw(x)dx=0 for k={0, . . . , N},
the mother wavelet has N vanishing moments.

Daubechies wavelets were defined as trigono-
metric polynomials which maximize the number of
vanishing moments of the mother wavelet for a
minimal compact support. If the length of the
support of the base function is 2N, the number of
vanishing moments will be N ) 1. Practically this
means, that a polynomial of order N ) 1 can be
represented with zero value coefficients for the
mother wavelet. They are consequently well suited
to represent smooth signals with a sparse set of
coefficients. The price for this improvement over
Haar wavelets is the loss of symmetry of the base
function, i.e. the wavelet transform of a mirror
image of a function is not equivalent to the mirror
image of the wavelet transform of the function. It
has been shown that, except for the Haar system,
wavelets cannot be at the same time compactly
supported and symmetric (Daubechies, 1992).
Symmlet wavelets were designed to be as close as
possible to symmetry. As for Daubechies wavelets,
for a width of the compact support of 2N, the
number of vanishing moments of the mother
wavelet will be N ) 1. Coiflet wavelets were de-
rived from Daubechies wavelets and have in
addition vanishing moments for the scaling func-
tion. For N ) 1 vanishing moments the width of
the compact support increases to 3N.

Discrete wavelet transform

A computationaly efficient implementation of the
wavelet transform for digital signals is Mallat’s
fast discrete wavelet transform algorithm (Mallat,
1989b). The discrete wavelet transform can repre-
sented in a matrix form as:

d ¼Wf; ð4Þ

were f ¼ ff1; f2; . . . ; fNg0 is the original signal
represented as a column vector of N=2n discrete
data points, d is a N�1 vector comprising both the
discrete scaling coefficients aj0k and the discrete
wavelet coefficients bjk. W is a N � N orthogonal
transformation matrix defined by the chosen
orthonormal wavelet basis.

The connection between the discrete wavelet
transform and MRA can be described by the
operator representation of the quadrature mir-
ror filters, known as the low band (L) and the
high band (H) filters, which are specifically de-
fined by the chosen orthonormal wavelet basis.
If f (n) is the original signal (of 2n data points),
at each stage the wavelet decomposition moves
to a coarser approximation, i.e f (n)1)=Lf (n) and
d (n)1)=Hf (n), where d (n)1) is the detail lost by
approximating f (n) by the averaged f (n)1). In
this way the discrete wavelet decomposition of
f (n) is represented as another sequence of length
2n, where the coarser approximation f (n)1) has
only half of the original signal length. This
procedure can be continued until one approxi-
mation coefficient remains. Thus the DWT (the
equivalent of Equation 4) can be summarized
as:

f!ðHf;HLf;HL2f; ...;HLjf; ...;HLn�1f;HnfÞ

¼ðdðn�1Þ; dðn�2Þ;. ..;d j;.. .;d1;d 0; f 0Þ; ð5Þ

where the ‘detail’ sequences d j contain the wavelet
coefficients bjk.

Wavelet de-noising is based on the property of
wavelets to represent signals with a set of coef-
ficients which have desirable statistical properties
in the suppression of noise (Daubechies, 1992).
A substantial reduction of the noise level is
achieved by applying a wavelet transform fol-
lowed by a suppression of noise-related wavelet
coefficients and backward wavelet transform
(Figure 1). The most widely used methods to
suppress noise-related coefficients are global
hard- and soft-thresholding of the wavelet coef-
ficients (Donoho and Johnstone, 1994, 1995). In
the hard-thresholding procedure all coefficients
below a threshold k are zeroed (keep or kill),
while in soft-thresholding, in addition, all the
other coefficients are also shrunk towards zero
by subtracting k (shrink or kill):1The kth order moment of w is defined as � xkw(x)dx.

141



bjk;hard ¼
bjk if jbjkj > k

0 if jbjkj � k;

(

bjk;soft ¼
bjk þ k if bjk < �k

bjk � k if bjk > k

0 if jbjkj � k:

8
><

>:

ð6Þ

k is determined using the ‘universal threshold’
estimator: k ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logN
p

, where r represents the
median absolute deviation of the wavelet coeffi-
cients obtained after the first wavelet decompo-
sition step divided by an empirical factor of
0.6745 and N is the total number of data points.
This represents a robust procedure to estimate the
noise level because the wavelet coefficients at the
finest resolution level represent predominantly
spectral noise. A large number of methods to
estimate the wavelet coefficient threshold were
compared in a review article (Antoniadis et al.,

2001) some of which were also tested in this
work.

The first dyadic levels (j={1, 2, 3, . . .} in
Equation 5) represent the low frequency compo-
nents of the signal in the wavelet representation,
i.e. baseline and peak shape features. Therefore the
suppression of these wavelet coefficients is not
desirable and a ‘low-frequency cutoff’ J which
preserves the first dyadic levels is usually applied.

Translation invariant (TI) wavelet transform

Wavelet suppression using hard- or soft-thres-
holding can cause truncation artifacts in the
vicinity of the discontinuities introduced by sup-
pressing individual coefficients which are often
called Gibbs artifacts. These artifacts can be
attributed to the lack of translation invariance of
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Figure 1. Schematic representation of wavelet de-noising: the DWT decomposes the original signal in wavelet coefficients (k) at
different dyadic levels (j). Noise-related coefficients are eliminated by thresholding and the spectrum is reconstructed by an inverse
wavelet transform.

142



the wavelet base. A simple method to average the
translation dependence is ‘cycle spinning’ where
data is shifted, de-noised and un-shifted. Subse-
quently the results for different shifts are averaged.
A translation invariant transformation algorithm
(Coifman and Donoho, 1995) was designed for
fast cycle-spinning over all N points of the spec-
trum. In conjunction with de-noising, the TI
wavelet transform has significant advantages,
particularly when sharp signals in an NMR spec-
trum cause pronounced Gibbs artifacts.

Materials and methods

Experimental NMR data

A 15N-edited NOESY spectrum of the Sud protein
from Wolinella succinogenes (30 kDa homodimer,
137 residues in the monomer unit) was employed
to test and calibrate different wavelet de-noising
protocols. A reference NOESY peak list compris-
ing 1410 NOE signals was collected manually and
was verified by interactive structure calculation
and NOE assignment using the ARIA software
(Lin et al., 2004). The test 15N-NOESY spectrum
was recorded with 48 increments in the 15N and
180 increments in the 1H dimension. The spectrum
was processed in NMRLab using sine bell window
functions and zero filling to 512 points in the
incremented proton and 128 points in the incre-
mented nitrogen dimension. For the automated
NOE assignment and structure calculation two
additional NOESY spectra were included: a
13C-separated NOESY and a 13C-separated
NOESY with the carrier frequency on the me-
thyl protons. In addition to the NOESY data,
11 hydrogen bonds and 136 dihedral angle
constraints obtained with TALOS (Cornilescu
et al., 1999) were utilized during the structure
calculations. The backbone chemical shift
assignment was 95% complete (Lin et al., 2000)
with few flexible regions missing and the side
chain resonance assignment was 74% complete.

Wavelet de-noising is achieved by performing a
DWT and applying a threshold to the wavelet
coefficients. In the simplest approach, a one-
dimensional (1D) DWT has been applied to each
1D strip of the multidimensional NMR spectra.
Alternatively, two-dimensional (2D) DWT has
been used to de-noise 2D slices of the NMR

spectra. The wavelet de-noising routines used in
this work were based on the WAVELAB8.02
wavelet toolbox (Buckheit and Donoho, 1995).

Quantification of signal-to-noise and resolution

To evaluate the effect of wavelet de-noising on the
noise level in the spectrum, on peak intensities and
on automatically generated peak lists we have used
four different criteria: a statistical measure of the
noise level in spectra and three scores which
compare the peaks picked after de-noising with the
reference peak list.

(1) For each 1H)1H slice of the NOESY spectrum
a noise standard deviation r was estimated by
taking the minimum of the standard deviations
of 256 adjacent square sections of the slice and
a statistical de-noising factor was calculated as
dfactor=rraw/rwav.

(2) The effect of the wavelet shrinkage on the fine
structure of the NMR signals was quantified
by a fine structure score which compares the
reference peak volumes (Vref) with the corre-
sponding volumes after wavelet de-noising
(Vwav):

fscore ¼ 1�mean
Vref � Vwavj j

Vref

� �
: ð7Þ

The peaks volumes were obtained using the
numerical integration algorithm described in
the Appendix.

(3) To identify signals which fall below the
peak picking threshold as a consequence
of the smoothing effect of the wavelet de-
noising, a peak picking score was defined as
pscore=Nwav/Nref, where Nwav is the number
of real peaks automatically picked on the
wavelet de-noised spectrum and Nref the
number of peaks in the reference list. This
score measures the relative amount of small
signals or signal shoulders which were lost.

(4) Because the noise standard deviation r did not
always provide a useful measure for noise
suppression in the peak list, an additional
de-nosing score which calculates the ratio of
the noise-related peaks obtained before (Nnoise

raw )
and after de-noising (Nnoise

wav ) was introduced:
dscore ¼ 1�Nnoise

wav =N
noise
raw .

With the exception of the de-noising factor,
dfactor, which is always larger than one, these
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scores have values between zero and one where a
value of one represents the ideal case of a noise-
free peak list without any missing signals. A neg-
ative value of dscore indicates truncation artifacts
(causing additional local extrema) introduced by
the wavelet transform.

A consistency check of the NOESY peak listswas
introduced to validate and partially assign NOESY
cross peaks after automated peak picking using
sequence-specific resonance assignments. The
checking procedure is based on the following
principles: (1) a NOESY cross peak is usually part
of a network of connections between pairs of spin
systems (network anchoring) and (2) NOESY
spectra have an intrinsic symmetry (symmetry
mapping). In 15N-edited NOESY spectra symmetry
mapping selects pairs of NH–NH signals, whereas
between 15N- and 13C-edited NOESY spectra HN–
HC pairs are identified. A similar scheme was
originally introduced to discriminate between
multiple NOE assignments (Herrmann et al.,
2002a) and later used for NOESY cross peak vali-
dation (Herrmann et al., 2002b). Here we use a
combination of network anchoring and symmetry
mapping for peak validation and alternatively, as a
method to select NOE assignments. The individual
assignment possibilities allowed by the frequency
tolerance are subject to a two-pass filtering which
yields a zero-or-one scoring as follows: (1) the
network anchoring score is positive if at least a
second non-diagonal NOESY peak between the
same pair of residues is found and (2) the symmetry
mapping score is positive if a symmetric partner
exists, which is also anchored in its own network of
NOE contacts. The last condition was introduced
to minimize the amount of erroneous symmetry
partners owing to the residual noise or missing
chemical shifts. ‘Lonely’ NOESY cross peaks which
do not belong to any possible network of NOE
contacts and do not have any symmetry partner are
rejected. To discriminate between the different
assignment possibilities of a NOESY cross peak the
conditions are more restrictive: an assignment is
made only if it anchors the peak in a network of
contacts and if it allows a symmetry related partner.

The iterative NOE assignment and structure
calculations were carried out with ARIA (ambig-
uous restraints for iterative assignment) program
(Linge et al., 2003). The consistency filters for the
NOESY peak lists were embedded into the ARIA
interface.

Results

Optimal wavelet-based de-noising scheme

Different schemes for wavelet de-noising were
evaluated and compared. These included 1D and
2D DWT, where each was evaluated for several
mother wavelets (Symmlet wavelet with 5, 8 and 10
vanishing moments: S5, S8 and S10; Daubechies
wavelet with 2 and 10 vanishing moments: D4 and
D20; Coiflet wavelet with 2 and 10 vanishing
moments: C1 and C5; and Haar wavelet),
different de-noising schemes (hard-, soft-, TI
hard- and TI soft-thresholding) and various
low-frequency cutoffs (J=2)5). De-noising was
always applied to the 1HN–1H planes of the
NOESY test spectrum and in the case of the 1D
DWT we examined the effect of the order in
which the two dimensions were de-noised
(1H/1HN or 1HN/1H).

Initially, 384 different de-noising protocols
were applied to a 2D 1H–1H cross section of the
3D 15N-edited NOESY spectrum (Figure 3, pa-
nel (e)) and evaluated using the scores described
in Materials and methods (Figure 2). As ex-
pected, the Haar wavelet scored low regardless
of the shrinkage scheme (methods: 8, 16, 24 and
32 in Figure 2) because the Haar wavelet basis is
not continuous and therefore less suitable to
represent smooth functions. Wavelets with good
smoothing properties which were designed to
minimize the wavelet coefficients for smooth
functions, such as Symmlet and Daubechies
wavelets, represent a good compromise between
noise reduction and the preservation of the fine
structure (methods: 1–5, 9–13, 17–21 and 25–29
in Figure 2). Compared to the 1D DWT the 2D
decomposition is computationally more efficient,
however the overall scores are inferior (Figure 2:
blue spots). The decomposition order for the 1D
DWT within the 2D data matrix has little influ-
ence although slightly better scores were ob-
tained when the incremented proton dimension
was de-noised first (1H/1HN, Figure 2: red
symbols). Soft-thresholding yields the best pos-
sible noise suppression (large dfactor and dscore)
at the expense of fine structure (low fscore) and
completeness of the peak list (low pscore). In
contrast, hard-thresholding preserves the fine
structure at a modest gain of signal-to-noise. TI
de-noising proved superior in all scores because
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it eliminates truncation artifacts and averages
residual noise (de-noising methods 16–32 in
Figure 2). The low-frequency cutoff (J) had little
influence in combination with hard-thresholding
schemes, presumably owing to the large wavelet
coefficients of the peaks (intense singularities)
compared to the baseline areas. For soft-thres-
holding, low values of J caused smoothing be-
cause all wavelet coefficients were shrunk
regardless of their absolute value. As a general
result, for signals shorter than 2500 digital
points, a low-frequency cutoff of three (J=3)
represents a good compromise between signal-
to-noise and resolution.

In a second step we applied the S5 (Symmlet 5)
and D4 (Daubechies 4) wavelet de-nosing proto-
cols to the full 3D spectrum (Table 1). The anal-
ysis confirmed the previous result of two possible
de-noising strategies which yield either strong de-
noising or high preservation of fine structure,
respectively. Soft-thresholding yielded a high sig-
nal-to-noise ratio (dfactor=2.7–5.4) but sup-
pressed the low intensity signals (pscore=0.77–
0.83), whereas hard-thresholding preserved the
fine structure (pscore=0.92–0.94) on the expense
of the signal-to-noise gain (d factor=1.2–1.8). Best
results were obtained when the 1D DWT was
used in combination with the TI de-noising.
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Figure 2. Scores for 384 de-noising protocols using a test plane of a 3D 15N-edited NOESY spectrum of the Sud protein. The four
sections separated by dashed lines correspond to soft-, hard-, TI soft- and TI hard-thresholding (methods: 1–8, 9–16, 17–24 and 25–32).
For each section the following wavelet bases were used: S5, S8, S10, D2, D20, C1, C5 and Haar (in the specified order). Red and green
colors represents the 1D DWT de-noising order 1H/1HN and1HN/1H, respectively whereas blue represents the 2D DWT. The low-
frequency cutoffs are represented by the symbols + (J=2); � (J=3); � (J=4); and * (J=5).

145



For soft-thresholding best scores were obtained
with Daubechies wavelets while the Symmlet basis
scored better with hard-thresholding. No further
improvement could be found with more sophisti-
cated thresholding schemes (data not shown).

NOESY peak list validation

By incorporating the validation filters based on
network anchoring and symmetry mapping all
de-noising scores were further improved with a
minimal loss of peaks. This is reflected by a larger
de-noising score (dscore) and minimally smaller
peak picking scores (pscore) (see Table 2). Limi-
tations for this validation scheme are excessively
noisy peak lists, incomplete assignment tables,
shifted peaks or tight frequency tolerances.
Furthermore, unique contacts between amino

acids of different structural elements of proteins
with high information content may be eliminated.
When the validation filters were applied without
prior wavelet de-noising the quality scores indicate
that 4% of the real peaks were eliminated while
70% of the noisy entries were removed. However,
by combining wavelet de-noising and validation
filters up to 90% of the residual noise was removed
while only 2% additional real peaks were elimi-
nated.

Iterative NOE assignment and structure calculation
using wavelet de-noised spectra

The two de-noising strategies derived in this
analysis have complementary features for
automated NOE assignment strategies. The first
de-noising scheme employing soft-thresholding

Table 1. Scores for different de-noising proceduresa applied on a 15N-edited NOESY

De-noising method 1D DWT 2D DWT

dfactor fscore pscore dscore CPUb time (s) dfactor fscore pscore dscore CPUb time (s)

S5 soft 3.254±0.298 0.850 0.812 0.522 1437.3 2.673±0.260 0.829 0.813 0.517 517.1

S5 TI soft 2.850±0.262 0.857 0.828 0.576 5711.8 2.943±0.298 0.829 0.806 0.609 8952.0

D4 soft 5.398±0.651 0.848 0.805 0.525 1401.2 4.045±0.556 0.832 0.798 0.532 519.2

D4 TI soft 4.277±0.491 0.849 0.799 0.611 5723.1 4.378±0.533 0.823 0.774 0.655 8802.8

S5 hard 1.242±0.056 0.973 0.945 0.134 1410.7 1.232±0.056 0.960 0.916 0.183 505.2

S5 TI hard 1.335±0.068 0.975 0.943 0.264 5663.2 1.400±0.083 0.957 0.923 0.354 8880.3

D4 hard 1.621±0.180 0.968 0.942 )0.401 1412.5 1.473±0.130 0.960 0.932 )0.447 509.4

D4 TI hard 1.800±0.194 0.978 0.933 0.232 5602.0 1.807±0.155 0.964 0.903 0.426 8717.2

aThe low-frequency cutoff J was set to a value of 3 for all de-noising procedures.
bCPU time required on a 1.5 GHz AMD processor for wavelet de-noising. For 1D DWT the incremented proton dimension was de-
noised first.

Table 2. Quality scores after NOESY peak list validation using the network anchoring and symmetry mapping filters

De-noising method 1D DWT 2D DWT

fscore pscore dscore fscore pscore dscore

Nonea 1 0.961 0.709 – – –

S5 soft 0.851 0.791 0.845 0.831 0.731 0.864

S5 TI soft 0.858 0.806 0.868 0.830 0.783 0.874

D4 soft 0.848 0.774 0.852 0.832 0.722 0.881

D4 TI soft 0.850 0.777 0.891 0.829 0.752 0.901

S5 hard 0.973 0.920 0.727 0.960 0.894 0.737

S5 TI hard 0.975 0.918 0.771 0.957 0.899 0.799

D4 hard 0.969 0.913 0.586 0.961 0.908 0.559

D4 TI hard 0.978 0.903 0.775 0.964 0.878 0.819

aAutomated picked peaks using the original spectrum.
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(1D-DWT-D4-TI-Soft) yields a peak lists which is
approximately 80% complete and 60% de-noised
(list (i)). The second de-noising scheme which uses
hard-thresholding of the wavelet coefficients (1D-
DWT-S5-TI-Hard) provides a peak list which is
95% complete and 25% de-noised (list (ii)).
Combined with NOESY peak list validation the
peak lists were 75% complete and 90% de-noised
(i) or 90% complete and 75% de-noised (ii),
respectively. Automated iterative NOE assignment
and structure calculation can take advantage of
the complementary features of the two schemes if
the two peak lists are employed incrementally. In a
first stage only the best and most reliable peak list
(i) is used while peak list (ii) with modest noise
suppression and a large number of signals can be
introduced in a later stage when a structural model
is already available.

This strategy was validated using the experimental
NOESY data of the Sud dimer for which a high
resolution solution structure was previously reported
(Lin et al., 2004). To simplify the assignment proce-
dure the NOE assignment and structure calculations
were carried out only for the monomer unit (residues
20–130). The N-terminal a-helix was not considered
since its positioning is essentially determined by the
dimer fold. The monomer reference structure was
recalculated using the intra-monomer distance con-
straints originating from the 15N,13C and methyl-13C
edited-NOESY spectra.

Three stage NOE assignment and structure
calculation protocol

The first stage of iterative NOE assignment and
structure calculation started with the ‘cleanest’
NOESY peak list (i) and five iterations in ARIA.
In this stage 2117 NOEs were collected from the
three heteronuclear NOESY spectra. Besides vali-
dation of NOESY peaks, the network anchoring
and symmetry mapping filters allowed 562 unam-
biguous NOE assignments. The coupled NOE
assignment and structure calculation protocol
followed the standard ARIA scheme (Linge et al.,
2001) of the first five iterations. To take advantage
of the clean but incomplete peak list (i) and to
minimize the amount of peaks that may be
incompatible with the transient 3D models owing
to underestimated upper limits, the qmove flag of
the violation analysis module in ARIA was used

throughout these initial five iterations2. In each
iteration 30 structures were calculated and the ten
models with lowest energy were used to interpret
the spectra in the following cycle. The ambiguity
cutoff in ARIA3 was gradually decreased from 1 to
0.98. At this stage a bundle of conformers with a
mean backbone RMSD of 4.68±1.08 Å between
the best ten models was obtained. The RMSD
between the average structure and the reference
model was 2.64 Å (Figure 3, panel (b)).

In the second stage these models were used as a
starting point for a new cycle of four ARIA iter-
ations using the peak list (ii) and after the
anchoring/symmetry based validation (2615
NOEs). The protocol was identical with the one
employed in the first part of the run but no initial
assignments were imposed. In this way all assign-
ment possibilities were reassessed based on the
previously calculated structural models. After four
iterations a bundle of conformers with a mean
backbone RMSD of 2.00±0.36 Å and a deviation
between the average and the reference structure of
1.72 Å was achieved (Figure 3, panel (d)). Despite
a high ambiguity cutoff for the NOE assignments
(0.98) which allows for a large number of ambig-
uous distance restraints, the calculation converged
to a well defined model. The sparseness of the
cross peak list in this stage does not represent a
drastic limitation because NOESY-based structure
calculations are tolerant with respect to the data
incompleteness (Jee and Güntert, 2003).

In the third stage the previously calculated
models were used to interpret the peak lists
obtained by automated peak picking performed on
the original data (approximately 3500 assignable
peaks). Four cycles of ARIA (iterations 5–8) were
carried out imposing strict violation tolerances
(1.0–0.1 Å) and spin diffusion correction. The
ambiguity cutoff was gradually decreased from
0.96 to 0.8. It is important to use the original
spectra for the final NOE assignment and structure
calculation because the most informative long-
distance NOE signals may have very low intensities
and can be suppressed even with the most conser-
vative de-noising schemes. After a final ARIA

2The qmove feature moves the upper limit for each systemati-

cally violated restraint to 6 Å, repeats the violation analysis and

rejects only the remaining violated restraints.
3The number of assignment possibilities which are ranked and

taken into account based on the previously calculated struc-

tures.
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Figure 3. (a), (c) and (e) represent a 2D slice of the 3D 15N-edited NOESY spectrum of the Sud protein fromWolinella succinogens: (a)
after 1D-DWT-D4-TI-Soft de-nosing, (c) after 1D-DWT-S5-TI-Hard de-noising and (e) the original cross section. Red crosses depict
the automatically picked peaks for each spectrum. (b), (d) and (f) show backbone plots of the reference structure (red) together with the
ten best conformers (blue) obtained in subsequent stages of automated NOE assignment and structure calculation using NOESY
spectra (a), (c) and (e), respectively.
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iterative structure calculation 1923 non-redundant
NOEs were assigned leading to a bundle of the ten
best conformers with a mean backbone RMSD of
0.85±0.2 Å (Figure 3, panel (f)).

An identical structure calculation protocol was
applied using the distance restraints previously
obtained by manual peak picking. The automated
and manual schemes gave similar target functions
and almost identical RMSD values. The backbone
RMSD between the mean structures of the two
bundles (automatic versus manual) was 1.06 Å.
Additionally, a control run of iterative NOE
assignment and structure calculations with ARIA
using the raw peak lists obtained by automated
peak picking on the original spectra (same input
data as for stage 3) was performed. In this case,
both the target function value and the RMSDof the
NMR ensemble were considerably higher indicat-
ing a poorer convergence. The accuracy given by
the RMSD deviation from the reference structure
increased to 1.59 Å. Table 3 presents the structural
statistics summary of the three-stage automated
NOE assignment and structure calculation com-
pared to the corresponding values for the interac-
tive manual approach and for the standard ARIA
protocol using peak lists generated by automated
peak picking without wavelet de-noising.

Discussion

The difficulty of de novo protein structure calcula-
tion using iterative NOE assignment strategies is to
distinguish between multiple assignment possibili-
ties of the NOESY cross peaks in the presence of
different types of noise. The most direct type of
noise is spectral noise arising from the NMR
hardware. Although this has been substantially
reduced by the introduction of cryogenically cooled

probes there is always remaining noise, especially as
NMR spectroscopists use proteins at lower con-
centrations. In addition, there is noise in the peak
lists after peak picking, typically arising from arti-
facts or chemical shift ambiguities in the spectrum.
The method described in this work takes advantage
of direct spectral noise to determine de-noised peak
lists at different levels of reliability. Clearly, this
method is limited to noise present in the data and
will fail for perfect spectra.

The analysis of many different wavelet de-nois-
ing schemes applied to a sample NOESY spectrum
showed that no single wavelet de-noising strategy
yields a perfect peak list. High levels of de-noising
are usually associated with smoothing effects caus-
ing suppression of low intensity signals and signal
shoulders. However, the special features of different
de-noised peak lists provide complementary infor-
mationwhich facilitate a combination of automated
peak picking, NOE assignment and structure cal-
culations employing the ambiguous distance re-
straints (ADR) concept (Nilges, 1995) in ARIA.

ADR-based structure calculations suffer from
additional local minima introduced in the NOE
hybrid energy function by incorrect assignment
possibilities which lead to a more demanding
minimization problem. To simplify the landscape
of the NOE potential surface and to reduce the
effect of spectral artifacts additional filters based
on the chemical shift assignments and the intrinsic
properties of the NOESY spectra (network
anchoring, symmetry mapping, restraint combi-
nation and Gaussian frequency windows) were
previously introduced (Herrmann et al., 2002a, b).
However, for these sophisticated filtering strategies
almost complete chemical shift assignments and
clean NOESY cross peak lists are required (Gün-
ter, 2003; Jee and Güntert, 2003).

Table 3. Structural statistics for the three stages of automated NOE assignment and structure calculation; comparison with the results

of the interactive manual approach and standard ARIA protocol

Stage 1 Stage 2 Stage 3 Manual Standard ARIA

NOE cross peaks 2117 2615 3507 2700 3507

NOE distance restraintsa 1615 1965 1923 1896 1901

Target function (kcal/mol) 2215.1±417.3 944.3±309.1 132.9±7.0 110.6±3.4 215.1±16.2

Backbone RMSD (Å)b 4.68±1.08 2.00±0.36 0.85±0.20 0.84±0.10 1.16±0.21

2.64 1.72 1.06 1.59

aUnambiguous and ambiguous (ADR) distance restraints.
bFirst row denotes the mean backbone RMSD of energetically best ten models, the second row the RMSD between the ensemble
average structure and the reference model. For all RMSD calculations residues 21–89 and 95–129 were used.
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The strategy presented here combines filters
which use the intrinsic logic of the peak list
(symmetry mapping and network anchoring) with
wavelet de-nosing which reduces the spectral noise
independent of any specific features of the peak
list. Different stages of de-noising complement the
requirements of the ADR algorithm by providing
a highly reliable but incomplete peak list in a first
stage followed by a less stringently de-noised but
almost complete peak list in a second stage of
combined assignment and structure calculation.
This strategy is less prone to move into local
minima than other concepts which emphasize fil-
ters relying on the internal logics of the peak list.

The advantages of the de-noising strategy will
be most significant for somewhat noisy NOESY
spectra. Wavelet de-noising is computationally
efficient, in fact commonly used DWT algorithms
are faster than the Fast Fourier Transformation.
Therefore de-noising and peak picking require
little additional computational time to obtain peak
lists for different stages of the procedure. The
combined software tools provide wavelet de-nois-
ing, peak picking and integration with export
modules to different file formats. Therefore this
software will be commonly applicable with differ-
ent programs for combined NOESY assignment
and structure calculation. The symmetry and net-
work anchoring filters were directly incorporated
into the ARIA software. An initial version of the
software is available from the authors.
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Appendix

Peak picking and peak integration

A robust numerical procedure for automated peak
picking and peak integration of the multidimen-
sional NMR spectra was developed as an inte-
grated tool in this project. This peak picking

procedure consists of four distinct steps which will
be described for a paradigmatic 2D dataset.
(1) To overcome distortions from non-uniform

noise distributions and noise bands (water line,
diagonal and T1-noise bands) the spectral local
background noise levels were determined as
described previously (Koradi et al., 1998). For
each one-dimensional strip of the spectrum a
noise standard deviation r was calculated by
taking the minimum of the standard deviations
for 16 consecutive sections of the strip. The
local background noise level of a point P of
coordinates (i1, i2, . . ., in), belonging to a
n-dimensional NMR spectrum, is calculated
according to:

bnoiseðPiÞ

¼ F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

dim¼1
r2
dim;idim

� ðn� 1Þ �min
dim;i
ðrdim;iÞ2

s
;

ðA1Þ

where F is an empirical user-adjustable factor
(between 2 and 5).

(2) In a second step, the spectrum was segmented
into regions of points with the absolute value
of the intensity larger than the local noise
levels bnoise(P) (Figure A1: blue crosses).
Because the standard deviation of the signal
after de-noising is not a suitable descriptor for
noise levels, the bnoise(P) values obtained for
the native spectra were also used for the seg-
mentation of the de-noised spectra.

(3) The local extrema (maxima or minima,
depending on the peak signs) were determined
by a grid search using the sparse matrix
obtained after segmentation. In our imple-
mentation the width of the grid cell can be
adjusted by the user according to the digital
resolution of the dataset; in this work the
smallest possible grid cell size of 3�3 points
was used. A peak list containing the coordi-
nates of all the local extrema above the local
noise levels is obtained.

(4) An algorithm for digital peak integration which
can separate overlapping signals (even if those
have very different sizes) was designed. This
algorithm first defines an initial integration
box around each local maximum4 (Figure A1:

4For negative signals a positive mirror image of the initial

integration box is computed prior to integration.
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full boxes). Its rational size is determined by a
rectangular local minimum search starting
from the central maximum along the Cartesian
dimensions of the spectrum which stops either
if the background noise level is reached or if a
local minimum is encountered (Figure A1:
magenta boxes). Within the refined rectangu-
lar integration box the peak shape is resolved
by an object-related growing algorithm around

the local maximum (Figure A1: red crosses)
which iteratively adds one square shell cen-
tered on the central maximum (Figure A2:
continuous line) until the end of the integra-
tion box is reached in each dimension. A point
of the new shell (Figure A2: point 7) is added
to the peak if the first order neighbor
(Figure A2: point 2) has a higher intensity in
the previous layer and if the second order
neighbors have intensities above the local
noise levels (points 1 and 3 in Figure A2). For
corners (Figure A2: point 5) the condition is
slightly different, the first order neighbor is
considered to be the edge of the previous shell
(Figure A2: point 3) and the second order
neighbors are located within the same layer
(points 4 and 6 in Figure A2).
Using this algorithm all data points which are

part of a given peak can be determined, even in the
presence of strong chemical shift degeneracies
without any a priori assumptions about the shape
of the signals. The peak integrals are calculated by
adding the data points determined in (1)–(4). In
our implementation this integrator also provides
the matrices describing the peak shapes for further
statistical multivariate or Bayesian analysis
(Grahn et al., 1989; Schulte et al., 1997).
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